Metabolic Control Through the Pgc-1 Review Family of Transcription Coactivators

Abstract

Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-one) is an inducible co-regulator of nuclear receptors and is involved in a wide diversity of biological responses. Every bit the principal regulators of mitochondrial biogenesis and office, PGC-1α and PGC-1β accept been reported to play central roles in bone metabolism. They can be speedily induced under conditions of increased metabolic activities, such as osteoblastogenesis and osteoclastogenesis, to fulfill greater free energy demand or facilitate other biochemical reactions. PGC-1α and PGC-1β have both overlapping and distinct functions with each other amidst their target organs. In bone homeostasis, PGC-1α and PGC-1β promote the expression of genes required for mitochondrial biogenesis via coactivator interactions with key transcription factors, respectively regulating osteoblastogenesis and osteoclastogenesis. Hither, nosotros review the electric current understanding of how PGC-1α and PGC-1β bear upon osteoblastogenesis and osteoclastogenesis, how these two PGC-i coactivators are regulated in bone homeostasis, and how nosotros can interpret these findings into therapeutic potential for bone metabolic diseases.

References

  1. Finck BN, Kelly DP (2006) PGC-one coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

    PubMed  PubMed Central  CAS  Google Scholar

  2. Liu C, Lin JD (2011) PGC-ane coactivators in the control of energy metabolism. Acta Biochim Biophys Sin (Shanghai) 43:248–257

    CAS  Google Scholar

  3. Andersson U, Scarpulla RC (2001) Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor i-dependent transcription in mammalian cells. Mol Jail cell Biol 21:3738–3749

    PubMed  PubMed Central  CAS  Google Scholar

  4. Zheng CX, Sui BD, Qiu XY, Hu CH, Jin Y (2020) Mitochondrial regulation of stalk cells in os homeostasis. Trends Mol Med 26:89–104

    PubMed  CAS  Google Scholar

  5. Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol six:121–145

    PubMed  PubMed Central  CAS  Google Scholar

  6. Ishii KA, Fumoto T, Iwai K, Takeshita Due south, Ito M, Shimohata N, Aburatani H, Taketani S, Lelliott CJ, Vidal-Puig A, Ikeda K (2009) Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15:259–266

    PubMed  CAS  Google Scholar

  7. Colaianni G, Lippo L, Sanesi 50, Brunetti G, Celi 1000, Cirulli N, Passeri G, Reseland J, Schipani E, Faienza MF, Tarantino U, Colucci Due south, Grano M (2018) Deletion of the transcription cistron PGC-1alpha in mice negatively regulates bone mass. Calcif Tissue Int 103:638–652

    PubMed  CAS  Google Scholar

  8. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-i family regulatory network. Biochim Biophys Acta 1813:1269–1278

    PubMed  CAS  Google Scholar

  9. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha Five, Troy A, Cinti Due south, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    PubMed  CAS  Google Scholar

  10. Yu B, Huo L, Liu Y, Deng P, Szymanski J, Li J, Luo X, Hong C, Lin J, Wang CY (2018) PGC-1alpha controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stalk Prison cell 23:193-209.e195

    PubMed  PubMed Cardinal  CAS  Google Scholar

  11. Uldry M, Yang Westward, St-Pierre J, Lin J, Seale P, Spiegelman BM (2006) Complementary activity of the PGC-1 coactivators in mitochondrial biogenesis and chocolate-brown fat differentiation. Cell Metab 3:333–341

    PubMed  CAS  Google Scholar

  12. Yang D, Wan Y (2019) Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol 41:551–563

    PubMed  PubMed Key  CAS  Google Scholar

  13. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig Due south, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar

  14. Lee AR, Moon DK, Siregar A, Moon SY, Jeon RH, Son YB, Kim BG, Hah YS, Hwang SC, Byun JH, Woo DK (2019) Interest of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stalk cells into adipocytes, chondrocytes and osteocytes. Arch Pharm Res 42:1052–1062

    PubMed  CAS  Google Scholar

  15. Hsu YC, Wu YT, Yu Thursday, Wei YH (2016) Mitochondria in mesenchymal stalk cell biology and prison cell therapy: from cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol 52:119–131

    PubMed  CAS  Google Scholar

  16. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968

    PubMed  CAS  Google Scholar

  17. Handschin C (2009) The biology of PGC-1alpha and its therapeutic potential. Trends Pharmacol Sci 30:322–329

    PubMed  CAS  Google Scholar

  18. Sanchez-de-Diego C, Artigas N, Pimenta-Lopes C, Valer JA, Torrejon B, Gama-Perez P, Villena JA, Garcia-Roves PM, Rosa JL, Ventura F (2019) Glucose restriction promotes osteocyte specification by activating a PGC-1alpha-dependent transcriptional program. J Physiol 15:79–94

    CAS  Google Scholar

  19. Huang PI, Chou YC, Chang YL, Chien Y, Chen KH, Song WS, Peng CH, Chang CH, Lee SD, Lu KH, Chen YJ, Kuo CH, Hsu CC, Lee HC, Yung MC (2011) Enhanced differentiation of three-factor-reprogrammed induced pluripotent stem cells into adipocytes via adenoviral-mediated PGC-1alpha overexpression. Int J Mol Sci 12:7554–7568

    PubMed  PubMed Central  CAS  Google Scholar

  20. Park-Min KH (2018) Mechanisms involved in normal and pathological osteoclastogenesis. Jail cell Mol Life Sci 75:2519–2528

    PubMed  CAS  Google Scholar

  21. Lucas Due south, Omata Y, Hofmann J, Bottcher Grand, Iljazovic A, Sarter G, Albrecht O, Schulz O, Krishnacoumar B, Kronke G, Herrmann One thousand, Mougiakakos D, Strowig T, Schett G, Zaiss MM (2018) Curt-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun nine:55

    PubMed  PubMed Central  Google Scholar

  22. Lelliott CJ, Medina-Gomez Yard, Petrovic N, Kis A, Feldmann HM et al (2006) Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac operation. PLoS Biol iv:e369

    PubMed  PubMed Central  Google Scholar

  23. Ma JD, Jing J, Wang JW, Mo YQ, Li QH, Lin JZ, Chen LF, Shao L, Miossec P, Dai L (2019) Activation of the peroxisome proliferator-activated receptor gamma coactivator 1beta/NFATc1 pathway in circulating osteoclast precursors associated with bone destruction in rheumatoid arthritis. Arthritis Rheumatol 71:1252–1264

    PubMed  PubMed Central  CAS  Google Scholar

  24. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    PubMed  Google Scholar

  25. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell cistron. J Biol Chem 277:1645–1648

    PubMed  CAS  Google Scholar

  26. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79:208–217

    PubMed  CAS  Google Scholar

  27. Zaccagnino P, Saltarella 1000, Maiorano Due south, Gaballo A, Santoro M, Nico B, Lorusso M, Del Prete A (2012) An agile mitochondrial biogenesis occurs during dendritic cell differentiation. Int J Biochem Prison cell Biol 44:1962–1969

    PubMed  CAS  Google Scholar

  28. Xing West, Singgih A, Kapoor A, Alarcon CM, Baylink DJ, Mohan S (2007) Nuclear gene-E2-related factor-1 mediates ascorbic acid consecration of osterix expression via interaction with antioxidant-responsive element in bone cells. J Biol Chem 282:22052–22061

    PubMed  CAS  Google Scholar

  29. Jiang LL, Zhang FP, He YF, Fan WG, Zheng MM, Kang J, Huang F, He HW (2019) Melatonin regulates mitochondrial role and biogenesis during rat dental papilla prison cell differentiation. Eur Rev Med Pharmacol Sci 23:5967–5979

    PubMed  Google Scholar

  30. Shen Y, Wu Fifty, Qin D, Xia Y, Zhou Z, Zhang X (2018) Carbon black suppresses the osteogenesis of mesenchymal stalk cells: the role of mitochondria. Office Fibre Toxicol 15:16

    PubMed  PubMed Key  Google Scholar

  31. Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Light-green Chiliad, Stewart A, Hart Thousand, Schinner Southward, Sethi JK, Yeo G, Make Physician, Cortright RN, O'Rahilly S, Montague C, Vidal-Puig AJ (2003) Label of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J 373:155–165

    PubMed  PubMed Key  CAS  Google Scholar

  32. Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278:30843–30848

    PubMed  CAS  Google Scholar

  33. Wei Due west, Wang X, Yang M, Smith LC, Dechow PC, Sonoda J, Evans RM, Wan Y (2010) PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Prison cell Metab 11:503–516

    PubMed  PubMed Central  CAS  Google Scholar

  34. Park UH, Yoon SK, Park T, Kim EJ, Um SJ (2011) Additional sexual practice rummage-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor. J Biol Chem 286:1354–1363

    PubMed  CAS  Google Scholar

  35. Izawa T, Rohatgi Due north, Fukunaga T, Wang QT, Silva MJ, Gardner MJ, McDaniel ML, Abumrad NA, Semenkovich CF, Teitelbaum SL, Zou West (2015) ASXL2 regulates glucose, lipid, and skeletal homeostasis. Cell Rep 11:1625–1637

    PubMed  PubMed Cardinal  CAS  Google Scholar

  36. Bonnelye E, Kung Five, Laplace C, Galson DL, Aubin JE (2002) Estrogen receptor-related receptor alpha impinges on the estrogen centrality in bone: potential part in osteoporosis. Endocrinology 143:3658–3670

    PubMed  CAS  Google Scholar

  37. Wang H, Wang J (2013) Estrogen-related receptor alpha interacts cooperatively with peroxisome proliferator-activated receptor-gamma coactivator-1alpha to regulate osteocalcin factor expression. Cell Biol Int 37:1259–1265

    PubMed  CAS  Google Scholar

  38. Kammerer Yard, Gutzwiller S, Stauffer D, Delhon I, Seltenmeyer Y, Fournier B (2013) Estrogen Receptor alpha (ERalpha) and Estrogen Related Receptor blastoff (ERRalpha) are both transcriptional regulators of the Runx2-I isoform. Mol Cell Endocrinol 369:150–160

    PubMed  CAS  Google Scholar

  39. Bonnelye Due east, Saltel F, Chabadel A, Zirngibl RA, Aubin JE, Jurdic P (2010) Interest of the orphan nuclear estrogen receptor-related receptor alpha in osteoclast adhesion and transmigration. J Mol Endocrinol 45:365–377

    PubMed  PubMed Fundamental  CAS  Google Scholar

  40. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A (2003) PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci Us 100:12378–12383

    PubMed  PubMed Central  CAS  Google Scholar

  41. Epstein PM (2012) Bone and the campsite signaling pathway: emerging therapeutics. In: Bronner F, Farach-Carson M, Roach H (eds) Bone-metabolic functions and modulators. Topics in Bone Biology, vol 7. Springer, London, pp 271–287

  42. Nervina JM, Magyar CE, Pirih FQ, Tetradis S (2006) PGC-1alpha is induced past parathyroid hormone and coactivates Nurr1-mediated promoter action in osteoblasts. Bone 39:1018–1025

    PubMed  CAS  Google Scholar

  43. Blagodatski A, Klimenko A, Jia L, Katanaev VL (2020) Small-scale molecule Wnt pathway modulators from natural sources: history, state of the art and perspectives. Cells 9:589

    PubMed Central  CAS  Google Scholar

  44. Maeda K, Kobayashi Y, Koide M, Uehara Southward, Okamoto M, Ishihara A, Kayama T, Saito One thousand, Marumo 1000 (2019) The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci 20:5525

    PubMed Central  CAS  Google Scholar

  45. An JH, Yang JY, Ahn Past, Cho SW, Jung JY, Cho HY, Cho YM, Kim SW, Park KS, Kim SY, Lee HK, Shin CS (2010) Enhanced mitochondrial biogenesis contributes to Wnt induced osteoblastic differentiation of C3H10T1/ii cells. Bone 47:140–150

    PubMed  CAS  Google Scholar

  46. Min W, Fang P, Huang M, Shi M, Zhang Z (2018) The decline of whole-body glucose metabolism in ovariectomized rats. Nat Commun 113:106–112

    CAS  Google Scholar

  47. Zhou JJ, Ma JD, Mo YQ, Zheng DH, Chen LF, Wei XN, Dai L (2014) Down-regulating peroxisome proliferator-activated receptor-gamma coactivator-one beta alleviates the proinflammatory effect of rheumatoid arthritis fibroblast-similar synoviocytes through inhibiting extracellular bespeak-regulated kinase, p38 and nuclear factor-kappaB activation. Arthritis Res Ther 16:472

    PubMed  PubMed Central  Google Scholar

  48. Shapiro G, Fishleder J, Stepensky P, Simanovsky Due north, Goldman 5, Lamdan R (2020) Skeletal changes following hematopoietic stem prison cell transplantation in osteopetrosis. J Os Miner Res 35:1645–1651

    PubMed  CAS  Google Scholar

  49. Han X, Nonaka K, Kato H, Yamaza H, Sato H, Kifune T, Hirofuji Y, Masuda K (2019) Osteoblastic differentiation improved by bezafibrate-induced mitochondrial biogenesis in deciduous tooth-derived pulp stem cells from a kid with Leigh syndrome. Biochem Biophys Rep 17:32–37

    PubMed  Google Scholar

  50. Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn South, Stein TP, Sebedio JL, Pujos-Guillot E, Falempin Thousand, Simon C, Coxam V, Andrianjafiniony T, Gauquelin-Koch Chiliad, Picquet F, Blanc S (2011) Resveratrol prevents the wasting disorders of mechanical unloading by acting as a concrete exercise mimetic in the rat. Faseb J 25:3646–3660

    PubMed  CAS  Google Scholar

  51. Pal S, Maurya SK, Chattopadhyay Due south, Pal Red china Southward, Porwal M, Kulkarni C, Sanyal S, Sinha RA, Chattopadhyay N (2019) The osteogenic issue of liraglutide involves enhanced mitochondrial biogenesis in osteoblasts. Biochem Pharmacol 164:34–44

    PubMed  PubMed Central  CAS  Google Scholar

  52. Deng T, Sieglaff DH, Zhang A, Lyon CJ, Ayers SD, Cvoro A, Gupte AA, Xia X, Baxter JD, Webb P, Hsueh WA (2011) A peroxisome proliferator-activated receptor gamma (PPARgamma)/PPARgamma coactivator 1beta autoregulatory loop in adipocyte mitochondrial role. J Biol Chem 286:30723–30731

    PubMed  PubMed Central  CAS  Google Scholar

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant numbers 81870737], Natural Scientific discipline Foundation of Guangdong Province, People's republic of china [grant numbers 2021A1515011779], Guangdong Financial Fund for High-Caliber Hospital Construction [grant numbers 174-2018-XMZC-0001-03-0125/D-02], and National Natural Science Foundation of Cathay [grant numbers 81771098].

Author data

Affiliations

Corresponding authors

Correspondence to Hongwen He or Fang Huang.

Ethics declarations

Conflict of involvement

The authors declare that at that place are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher'southward Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this commodity

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Fan, W., He, H. et al. PGC-1: a key regulator in bone homeostasis. J Os Miner Metab 40, 1–8 (2022). https://doi.org/10.1007/s00774-021-01263-due west

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s00774-021-01263-w

Keywords

  • PGC-1α
  • PGC-1β
  • Mitochondrial biogenesis
  • Osteoblastogenesis
  • Osteoclastogenesis

escobedotrind1988.blogspot.com

Source: https://link.springer.com/article/10.1007/s00774-021-01263-w?utm_source=xmol&utm_medium=affiliate&utm_content=meta&utm_campaign=DDCN_1_GL01_metadata

0 Response to "Metabolic Control Through the Pgc-1 Review Family of Transcription Coactivators"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel